网站地图 | RSS订阅 欢迎光临 丹阳市东方合金有限公司官网

咨询热线:0511-86688876

热门关键词: GH5605,GH3128,GH3044

新闻中心

当前位置:首页 > 新闻信息 > 公司新闻 > 如何防止合金高温

[newsnname]

来源 : www.alloy-east.com   发布时间 : 2021-08-04

1防止淬火裂纹的方法
(1) 零件形状的合理设计。尽量采用等壁厚设计,避免截面形状突变。首先,壁厚差异较大的零件不应做成一个,应采用马赛克结构,使每个块体的强度尽可能相等;② 大型零件应尽量设计成空心结构;③ 必要时应开工艺孔;④ 轮廓的拐角处应避免尖角,并应尽可能增加四个拐角的较大半径r。工具钢热处理件的圆角半径不应小于2mm。
(2) 严格控制热处理工艺。① 根据零件的尺寸、形状和材料,制定正确的热处理工艺规程,合理选择加热速度、温度和时间;② 采取完善的控温措施,实时掌握零件的真实温度,定期检查控温装置,严防热电偶老化或放置不准确造成过热。
2防止回火裂纹的方法
回火裂纹是指:淬火钢马氏体零件的显微组织处于膨胀状态,在100℃左右先收缩℃ 回火时。这时,如果淬火后的零件快速加热,零件表面会收缩,而内部则处于膨胀状态,从而导致开裂。防止这种裂纹的措施是在零件加热到300度之前不要迅速加热℃.
回火淬火也会产生回火裂纹,因为淬火组织中的残余奥氏体在淬火时会转变为与淬火相同的状态。防止此类裂纹的方法是从回火温度开始进行空气冷却。
3防止自发裂缝的方法
由于淬火零件的表面组织为残余奥氏体,在室温下,奥氏体转变为马氏体,导致零件的相变膨胀和开裂。防止此类裂纹的措施是:淬火后立即回火。淬火和回火之间的时间间隔不应超过3小时。如果不能在同回火,则零件应放入100℃ 炉子或水进行保温,以便第二天进行定期回火处理。
4防止磨削裂纹的措施
磨削裂纹主要由磨削热引起,与回火裂纹相同。它是由磨削热引起的表面淬火组织收缩引起的。裂纹方向通常与磨削方向成直角。预防措施如下:(1)淬火件磨削前,在150℃回火℃ 低温或300℃ 高温(研磨量大时);② 严格进行砂轮修整,保持磨具锋利,防止砂轮堵塞,减少磨削热;① 实践证明,选用较粗的砂轮可以减少裂纹的产生;④ 实践证明,选择合适的磨削量,提高砂轮转速,同时提高工件转速,可以避免磨削烧伤,降低工件开裂的概率。
5防止脱碳开裂的方法
脱碳的原因是加热温度过高或在空气中加热时没有采取适当的保护措施。为防止脱碳,可用真空炉加热工件或在保护气氛中加热工件。应严格控制加热井的温度,避免过度燃烧。
6防止低温裂纹的措施
由于淬火件在冷处理过程中残余应力会增大,导致低温裂纹的产生,因此在冷处理前应增加低温回火工艺,以减少裂纹的发生。
7防止电火花加工裂纹的措施
由于电火花加工的瞬时高温和快速冷却,在淬火零件表面容易形成微裂纹。防止微裂纹的方法是采用较小的电标准进行加工(影响加工速度),或加工后对改性层进行抛光。

 

【返回】

相关标签: [tag]

相关新闻

2020-03-10塑料模具的制造成本甚高,材料费只占模具成本的极小部分,因此,钢材选用在符合我国资源条件下,应优先选用工艺性好、性能稳定和使用寿命较长的钢种。于模具钢材应用研究,提供模具失效分析及模具寿命解决方案一站式服务,专业销售进口最具性价比模具钢材(硬质合金、瑞典乌德霍姆工具钢UDDEHOLM、日本日立模具钢HITACHI METALS、日本不二越高速钢、美国熔炉斯伯粉末冶金工具钢、德国葛利兹模具钢Groditz等)以及国产新型模具钢、基体钢、无磁模具钢、火焰钢、空冷钢、红冲模具钢等。

硬质合金适用于冷挤压成型的塑料模具用钢多使用工业纯铁。也可使用10、15、20、20Cr钢。为了得到较高的塑性,最好是用硅含量低的钢。对于很深的低模,可以分成若干道工序完成整个压制,在各道压制工序之间,低模应进行完全退火以恢复塑性。工业纯铁锻造应在1000~1250℃或680~850℃范围内进行,避免在中间温度进行,以防“重结晶脆性”。模具在900~930℃渗碳,自780~800℃淬火,并在150~250℃回火,表面硬度58HRC以上。

2016-07-29     航空发动机被称为“工业之花”,是航空工业中技术含量最高、难度******的部件之一。作为飞机动力装置的航空发动机,特别重要的是金属结构材料要具备轻质、高强、高韧、耐高温、抗氧化、耐腐蚀等性能,这几乎是结构材料中最高的性能要求。
  
  高温合金是能够在600℃以上及一定应力条件下长期工作的金属材料。高温合金是为了满足现代航空发动机对材料的苛刻要求而研制的,至今已成为航空发动机热端部件不可替代的一类关键材料。目前,在先进的航空发动机中,高温合金用量所占比例已高达50%以上。
  
  自1956年第一炉高温合金GH3030试炼成功,迄今为止,我国高温合金的研究、生产和应用已历经60年的发展历程。60年的高温合金发展可以分为三个阶段。
  
  第一个阶段:从1956年至20世纪70年代初是我国高温合金的创业和起始阶段。本阶段主要是仿制前苏联高温合金为主体的合金系列,如:GH4033,GH4049,GH2036,GH3030,K401和K403等。
  
  第二个阶段:从20世纪70年代中至90年代中期,是我国高温合金的提高阶段。主阶段主要试制欧美型号的发动机,提高高温合金生产工艺技术和产品质量控制。
  
  第三阶段:从20世纪90年代中至今,是我国高温合金的全新发展阶段。本阶段主要是应用和开发了一批新工艺,研制和生产了一系列高性能、高档次的新合金。
  
  目前,我国的高温合金研究主要研究单位是钢铁研究总院、北京航空材料研究院、中国科学院金属研究所、北京科技大学、东北大学、西北工业大学等,主要生产企业有:中航工业、钢研高纳、炼石有色、抚顺特钢、高钢特钢和第二重型机械集团万航模锻厂(二重)等。在此基础上,我国已具备了高温合金新材料、新工艺自主研发和研究的能力。
  
  在现代先进的航空发动机中,高温合金材料用量占发动机总量的40%~60%。在航空发动机上,高温合金主要用于燃烧室、导向叶片、涡轮叶片和涡轮盘四大热段零部件;此外,还用于机匣、环件、加力燃烧室和尾喷口等部件。

2019-01-07 目前对巴氏合金温时效/温成型的研究体现在材料强度和残余应力松弛上面,鉴于此,本次试验针对巴氏合金在不同温度载荷下的应力松弛特点,探求了巴氏合金温时效/温成型规律。

  一:试验方法

  将巴氏合金进行热处理,在进行室温下水淬,等温保温试验中的温度载荷分布选择353、393、413K,此时材料力学性能下降不明显甚至得到改善,采用X射线衍射仪无损测试试样表面残余应力,最后将试样置于某一温度下充分保温20h后,采用裂纹柔度法测量厚度方向的内部残余应力。

  二:试验结果与分析

  通过认为应力松弛过程中,热激活启动了位错运动式的材料发生塑性变形,从而残余应力不断减小,此时位错增殖所需的热激活能增加,塑性变形速率逐渐变低,故残余应力松弛速率随着松弛时间的增加而减小。在温度翟和恒定时,除加工工艺等造成的复杂初始应力状态外,表面残余应力与时间呈现出简单的线性对数关系。

  采用线切割机与裂纹柔度法得到试样内的残余应力分布测试结果,可见,在温时效下巴氏合金内部残余应力松弛规律与机械拉伸应力消减工艺下应力消减规律相似,且由于应力测试结果与机械拉伸试验数据相比,393、413K下保温20h后其应力松弛率分布达到机械拉伸量的1%与1.5%左右时的消减效果。

  三:试验结论

  ①发生显著的应力松弛受一临界温度影响,此温度位于353-393k。

  ②在行的温度载荷下,应力松弛与时间呈线性对数关系,但是初始残余应力例外。

  ③应力松弛速率随温度升高而增加,随着保温时间增加而减小,松弛主要发生在初期若干小时内,之后迅速趋于稳定。

  ④应力松弛量与速率主要由温度与初始应力水平控制,温度越高,初始应力越大,则初始应力松弛速率就越快,且应力松弛量也越大。

2016-07-13GH4099高温合金


GH4099(GH99)高温合金

GH4099(GH99) 化学成分

C Cr Ni W Mo Al Co Ti

≤0.08 17.00~20.0 余量 5.00~7.00 3.50~4.50 1.70~2.40 5.00~8.00 1.00~1.50

Fe B Mg Ce Mn Si P S

≤2.00 ≤0.005 ≤0.010 ≤0.020 ≤0.40 ≤0.50 ≤0.015 ≤0.015

GH4099(GH99)是 一种高合金化的镍基时效板材合金,用钴、钨、和铝、钛等元素综合强化,使合金具有较高的热强行,900℃一下可以长期使用,最高工作温度可达1000℃。 该合金组织稳定,并具有满意的冷热加工成型和焊接工艺性能,适合于制造航空发动机燃烧室和加力燃烧室等高温板材承力焊接结构件,用该合金制造的大型板材结构件,可在固溶处理后不经时效处理直接使用。主要产品有板材和丝材,也可以生产板材和锻件。

2020-07-07超级不锈钢、镍基合金是一种特种的不锈钢,首先在化学成分上与普通不锈钢不同,是指含高镍,高铬,高钼的一种高合金不锈钢。其中比较著名的是含6%Mo的钢(254SMo),这类钢具有非常好的耐局部腐蚀性能,在海水、充气、存在缝隙、低速冲刷条件下,有良好的抗点蚀性能(PI≥40)和较好的抗应力腐蚀性能,是Ni基合金和钛合金的代用材料。其次在耐高温或者耐腐蚀的性能上,具有更加优秀的高温或者耐腐蚀性能,是304不锈钢不可取代的。另外,从不锈钢的分类上,特殊不锈钢的金相组织是一种稳定的奥氏体金相组织。
 
由于这种特种不锈钢是一种高合金的材料,所以在制造工艺上相当复杂,一般人们只能依靠传统工艺来制造这种特种不锈钢,如灌注,锻造,压延等等。
在许多的领域中,比如:
1.海洋:海域环境的海洋构造物,海水淡化,海水养殖,海水热交换等。
2.环保领域:火力发电的烟气脱硫装置,废水处理等。
3.能源领域:原子能发电,煤炭的综合利用,海潮发电等。 
4.石油化工领域:炼油,化学化工设备等。
5.食品领域:制盐,酱油酿造等。
 
  在以上的众多领域中,普通不锈钢304是无法胜任的,在这些特殊的领域中,特种不锈钢是不可缺少的,也是不可被替代的。近几年来,随着经济的快速发达,随着工业领域的层次的不断提高,越来越多的项目需要档次更高的不锈钢——特种不锈钢(超级不锈钢、镍基合金)。
一些代表性的特种不锈钢有:
 1.超级不锈钢,也就是说是一种含有约6%钼的特种不锈钢,世界上有十来种钢种。大家也
叫6钼不锈钢。比如主要成分为;25Ni-23Cr-5.5Mo-0.2N 
2.Incoloy系列合金,比如说Incoloy800,主要成分为:32Ni-21Cr-Ti,Al
3.Inconel系列合金,比如说Inconel600,主要成分为:73Ni-15Cr-Ti,Al
 

4.哈氏合金,比如说C-276,主要成分为:59Ni-15Cr-16Mo-4W 
5.蒙乃尔合金,比如说蒙乃尔400,主要成分为:65Ni-32Cu 
 
  综合以上事例中,如果是选用普通不锈钢(如304),而不是选用特种不锈钢的情况下,普通不锈钢(304)并不适合这样的高温或者高腐蚀的环境,材料会马上发生腐蚀,或发生高温氧化。所以在众多的需要耐高温,耐腐蚀的环境下,特种不锈钢是最好的选择。

2021-06-01双相不锈钢具有良好的焊接性能,与铁素体不锈钢及奥氏体不锈钢相比,它既不像铁素体不锈钢的焊接热影响区,由于晶粒严重粗化而使塑韧性大幅降低,也不像奥氏体不锈钢那样,对焊接热裂纹比较敏感。
       双相不锈钢由于其特殊的优点,广泛应用于石油化工设备、海水与废水处理设备、输油输气管线、造纸机械等工业领域,近些年来也被研究用于桥梁承重结构领域,具有很好的发展前景。
        “节约型双相钢"经常会出现的焊接性能问题。而焊接标准双相钢并不是一个问题,而且不论采用何种工艺,都有适合这些应用的焊材。从金相的角度来看,焊接2101(1.4162)根本就没有问题,实际上它甚至要比标准级的双相钢更加容易焊接,因为这种材料事实上可以采用乙炔焊工艺来进行焊接,而对于标准双相钢材料而言,始终必须避免使用这种工艺。焊接2101所面临的实际问题是熔池的粘度不同,因此可湿性差了一点。这迫使操作人员在焊接的过程中更加多地使用电弧焊,而这正是问题的所在。尽管可以通过选择超合金化焊材加以弥补,但是我们经常希望选择匹配的焊材。
       在2101中,也存在低温热影响区和高温热影响区中的显微结构之间的热影响区相互作用,比2304、2205或2507更加有利。在以2101进行试验时,也已经发现由于镍含量较低,因此产生了含有较多氮与锰的不同类型的"回火色",而这影响了腐蚀性能。在电弧和熔池中发生的这一成分损失是由于氮与锰的蒸发与熔敷,这对于双相钢等级的材料来说是一个新问题,因此在这次讲课中将作了较多描述。

2019-08-26GH2136合金是Fe-Ni-Cr基沉淀硬化型变形高温合金,使用温度在700℃以下。该合金是在GH2132合金的基础上发展起来的,与之相比,降低了锰和硅含量,适当提高了钛、硼和碳含量,该合金在长期使用中降低了G相、σ相等脆性相的析出倾向,提高了合金在长期使用中组织及性能的稳性。合金具有良好的综合性能,长期使用组织稳定,有较好的,较小的线膨胀系数,易于焊接成形。主要产品有棒材和锻件等。 

GH2136高温合金已用于制作650℃-700℃工作的航空发动机涡轮盘及其他高温部件。

GH2136合金在600℃-700℃长期时效1000h-3000h后,合金中的γ‘相逐渐向η相转变,并降低蠕变和持久。胞状η相在800℃左右形成,在更高温度下呈现片状或魏氏体状,降低合金的冲击韧性和塑性。

用途:工业用的一般承力件等。。。高电阻电热合金(高镍及铁铬铝)、高温合金、精密合金、耐热合金、特种合金、不锈钢等都是常见和常用的镍铬合金.

2020-03-23耐高温合金材料采用化学法又称孕育剂法、添加剂法等。化学法晶粒细化的原理是向液态高温合金中加入大量的形核能力很强的异质晶核,增加结晶的形核率,达到细化高温合金铸造晶粒的目的。加入的晶粒细化剂应具有如下主要特点,即稳定性非常好,熔点高,不溶解进入高温合金溶体,或者添加剂加入液态高温合金中,其中某元素与钢液反应形成稳定的异质核心;其次异质形核剂颗粒与固相之间存在良好的晶格匹配关系,从而使固相颗粒与将要凝固的固相间的润湿角很小。

为了提高耐高温合金材料抗热腐蚀铸造高温合金疲劳性能和抗裂纹扩展能力,采用添加剂法细化晶粒组织。在真空炉内熔化耐高温合金材料合金后,分别加入Ni3Al、Ni2Al3、ZrC、NbC和B等五种孕育剂,并浇注成38mm圆柱,结果表明对耐高温合金材料晶粒细化效果由好到差的顺序是Ni2Al3、B、NbC、ZrC和Ni3Al。采用高的浇注温度和低的模温,添加Ni2Al3************,晶粒度平均达ASTM 11~12级。晶粒细化后的疲劳性能明显提高,例如700℃,450MPa的低周疲劳断裂循环周次由粗晶粒的3494~6531次提高到细晶的9782~12749次,提高2~3倍。

耐高温合金材料采用孕育剂法细化铸件表层晶粒收到了良好效果。用高温合金生产涡轮空心叶片时,将CoO粉涂在模壳内表面,当浇注叶片时,叶片表面由于存在大量异质晶核,而使表层晶粒细化,细化层约2mm。氧化钴在铸造过程中被合金中活泼元素如Al、Ti等还原,在耐高温合金材料的表面上生成金属钴。钴不但与铸件基体相晶型相同,而且晶格常数相近,因而润湿角最小,所以细化效果良好,疲劳强度明显改善,700℃,107周高周疲劳强度由280MPa提高到300MPa。

耐高温合金材料采用Co2O3+Al2O3粉,经1300℃焙烧后,变为兰色粉末,球磨过筛(+80,-120目)后,以1︰3.5的硅熔胶或硅酸乙脂和焙烧粉制成涂料,涂在腊型上,然后制成模壳,烧注K444合金试样,经低倍腐蚀,发现细化效果良好,平均晶粒尺寸2~3mm。其机理为Co2O3与Al2O3在高温下发生化学反应,在模壳内表面形成稳定的CoAl2O4,起异质结晶核心作用,增加形核率,从而获得细小等轴晶,这种方法在国内正广泛应用。

2021-06-22金属固相转变的主要特征是什么?什么因素构成了相变电阻?相变的驱动力是什么?金属固相转变的主要特征
1.不同类型的相界面具有不同的界面能和应变能
2.新旧阶段之间存在一定的取向关系和习性
新相与旧相之间存在一定的取向关系,新相往往在旧相的某个晶面上开始形成,称为习惯面
3.相界面上原子的强制匹配所产生的弹性应变能较大(新相与母相之间必须存在弹性应变和应力,并向系统中增加一个额外的弹性应变能)
共格>半共格>非共格
?  新旧材料的弹性应变能
4.易形成过渡相
5.母晶的缺陷促进了相变
6.原子扩散速率对固相转变有显著影响
阻力:界面能和弹性应变能
驱动力:过冷或过热
2、 奥氏体核优先在哪里形成?为什么?
1.奥氏体形核
在球状珠光体中:
成核优先发生在F/Fe3C界面
层状珠光体中有两种类型
成核优先发生在珠光体团簇的界面
它也在F/Fe3C界面成核
f/Fe3C界面奥氏体形核的原因如下
(1) 很容易得到形成一个完整的体系所需的浓度涨落、结构涨落和能量涨落
(2) 相界面处的形核降低了界面能和应变能的增加。
△G=-△Gv+△Gs+△通用电气
Δ GV—体积自由能差,△ GS-表面能,△ ge—弹性应变能
3、 奥氏体的基本晶粒尺寸、初始晶粒尺寸和实际晶粒尺寸是多少。
奥氏体固有晶粒度:根据标准试验方法,在930± 10° C.在足够的保温时间后测得的奥氏体晶粒尺寸。奥氏体初始晶粒尺寸:在临界温度以上,奥氏体形成刚刚完成,晶界刚刚接触时的晶粒尺寸;奥氏体实际晶粒度:在一定加热条件下获得的奥氏体实际晶粒度。金属的晶粒尺寸越小,晶界面积的比例越大,晶界的数量越多(晶粒缺陷越多,位错运动在晶界停止的次数越多),金属塑性变形时位错运动的阻力就越大,金属的塑性变形抗力越大,金属的强度和硬度就越高。晶粒越细,相同体积的晶粒越多。在塑性变形过程中,变形分散在许多晶粒中,变形更加均匀。虽然多晶体的变形是不均匀的,但晶体不同部位的变形程度不同,位错堆积程度也不同。位错堆积越严重,材料越容易被破坏。晶粒越小,可以使金属的变形越均匀,在材料失效前可以进行更多的塑性变形,在断裂前可以承受较大的变形,塑性韧性越好。因此,细晶金属不仅具有较高的强度和硬度,而且在塑性变形过程中具有良好的塑性。
4、 影响MS point的主要因素是什么?
A:影响MS点的主要因素如下:
1.化学成分钢的MS点主要取决于其奥氏体成分,其中碳是一个重要因素。随着奥氏体含碳量的增加,MS和MF点不断降低。除Al、co提高MS点外,Si、B对MS点无影响,大部分合金元素均不同程度地降低MS点。一般来说,所有降低MS点的合金元素都会降低MF点。
2.奥氏体晶粒度的测定实践证明,随着奥氏体晶粒度的增大,MS点增大。
3.奥氏体强度随奥氏体强度的增加而降低。
4.冷却速度对于大多数工业钢来说,连续冷却的冷却速度在很大范围内对MS点没有影响。
5、 什么是奥氏体稳定化?什么因素影响热稳定性和机械稳定性?
答:奥氏体稳定化是指在外界因素的作用下,奥氏体内部结构发生变化,从而导致奥氏体的不稳定

2019-07-12高温合金的技术开发
高梯度定向凝固共晶高温合金的组织与性能K4169高温合金组织细化及性能优化研究
高温合金高温合金
铸造镍基高温合金中Ni_5Zr的溶解和转变定向工艺和铪含量对一种镍基高温合金的影响
Mg在高温合金GH220中的作用
GH2027铁基高温合金的二相研究
Ni_3Al基高温合金添加碳化物质点的探索研究
MC和M_3B_2相在一种Ni-Cr-Co高温合金中的析出
镍基高温合金GH4145/SQ的高温低周疲劳行为
变形高温合金成型质量控制中的转换研究
高温合金高温合金
高梯度定向凝固共晶高温合金的组织与性能
K4169高温合金组织细化及性能优化研究
铸造镍基高温合金中Ni_5Zr的溶解和转变
定向工艺和铪含量对一种镍基高温合金的影响
Mg在高温合金GH220中的作用
FGH95粉末高温合金应力时效的组织和相分析
Rene′88DT粉末高温合金组织及γ′相析出动力学研究
镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究
镍基粉末高温合金中夹杂物的微观力学行为研究粉末高温合金的研究与发展

相关产品

Copyright www.alloy-east.com (复制链接) 丹阳市东方合金有限公司 GH5605,GH3128,GH3044 ,欢迎来电咨询.
企业圈子: