网站地图 | RSS订阅 欢迎光临 丹阳市东方合金有限公司官网

咨询热线:0511-86688876

热门关键词: GH5605,GH3128,GH3044

新闻中心

当前位置:首页 > 新闻信息 > 行业新闻 > GH5605厂家谈谈4J29用途

[newsnname]

来源 : www.alloy-east.com   发布时间 : 2019-03-13


相当于GB 4J29,ASTM F15,UNS K94610);KOVAR为含镍29%,钴17%的硬玻璃铁基封接合金。
该合金在20~450℃范围内具有与硬玻璃相近的线膨胀系数和相应的硬玻璃能进行有效封接匹配,和较高的居里点以及良好的低温组织稳定性,合金的氧化膜致密,容易焊接和熔接,有良好可塑性,可切削加工,广泛用于制作电真空元件,发射管,显像管,开关管,晶体管以及密封插头和继电器外壳等。可伐合金因为含钴成分,产品比较耐磨。
可伐易与钼组玻璃进行配合封接 ,一般工件表面要求镀金。

 

【返回】

相关标签: [tag]

相关新闻

2016-12-20事件:

据中国证券网报道:近日记者从工信部人士处了解到,航空发动机专项马上就要经国务院审议,“航空发动机是装备发展过程中非常重要的一项任务,目前,航空发动机专项文件还没有出,(不过)很快就要出台。”

点评:

千呼万唤,渐行渐近。“两机专项”(航空发动机、燃气轮机)于2015年首次进入政府工作报告,今年5月31日承担我国航空发动机专项的主体企业中国航空发动机集团(“中国航发”)挂牌,8月28日在北京举行成立大会。此次航空发动机专项马上就要经国务院审议的消息传出,再度表明航发专项正式进入倒计时。经历了2015和2016两年的期待,我们预计2017年航发专项落地的概率很大。

航空发动机专项市场空间巨大。航空航天产业一直是国家发展的重点领域,而航空发动机是飞机的心脏,拥有自主研发的航空发动机则是我国航空业腾飞的必经之路。如今国家已将航空发动机列入考虑之中,我们预计,在未来20年的时间里,国内将可能在发动机领域投入多达3000亿元,政府的大力扶持将有望推动发动机及其核心零部件产业迈入快速发展期。

突破航空发动机研发瓶颈,高温合金需求可能引爆。在航空发动机中,重要的瓶颈之一在于高温合金材料。高温合金材料自诞生起就广泛应用于航空航天领域,其用量占发动机总重量的40%-60%,是研发和生产航空发动机的关键要件之一。未来航空发动机专项一旦落地,对高温合金材料的需求将会大规模增长。根据美国国防部预测的数据,预计未来20年中国战斗机新增量将达到1430架、军用大飞机1500架、教练机500架,合计对高温合金需求量将达到5.7万吨,另外,现有军机的维护和修理折算成发动机所需数量为2000台,对应的高温合金需求量达到1万吨左右。因此仅军用航空发动机领域对高温合金的需求便将达到6.7万吨。如果再考虑到其它领域发动机、燃气轮机等方面,高温合金下游需求将更为广阔。

维持行业“推荐”评级。目前高温合金市场处于预期低位,未来一旦行情起来,相应公司有望深度受益。继续强烈推荐应流股份、钢研高纳。

2018-10-27变形高温合金属于复杂合金化材料,这些材料的合金化程度决定着材料的热强性和可锻性。由于合金的设计要求高温合金具有抗高温变形的能力,所以这类合金锻造变形困难、塑性低、变形抗力大是理所当然的。较高的脱溶合金元素含量(40%~50%),使合金具有多相组织,并且再结晶温度高,在高温下加工硬化严重,从而降低了工艺塑性,增大了变形抗力。硫、铅、锡等杂质使合金间结合力及晶界强度严重下降,对合金的高温塑性有特别明显的影响。含钛和铝的铁基合金可能造成氮化物和碳化物偏析,它们可在锻棒中形成条状夹杂,从而影响合金的可锻性。镍基合金中的氮化物和氧化物也起着破坏合金可锻性的作用。通过真空熔炼可以有效减少合金中的氧、氮及其他杂质的含量,消除或减轻合金中的偏析,显著提高合金的可锻性。 图2是合金结构钢、铁基合金GH2036和镍基合金GH4037的塑性曲线。表7为铁基和镍基高温合金在不同设备上锻造时的允许变形程度。由图2和表7可以看出,铁基高温合金的工艺塑性比镍基高温合金的工艺塑性高。在高温下冲击变形时,设备每次行程的允许变形量,对铁基合金为60%~65%,对镍基合金为40%~50%。而合金结构钢产生80%以上变形仍不出现脆性。在高速锤上进行模锻时,铁基合金的塑性(允许变形程度)有所增加,而镍基合金的塑性则停留在原来的水平上,其原因是坯料在变形过程中因热效应而温升。为了提高合金的高温塑性和锻件质量,建议用热挤锻法或带反力的闭式模模锻高温合金。

2020-11-19高温合金的发展历史,是人类孜孜不倦追求进步的真实写照。高温合金的开发从1940年左右燃气轮机的实际应用开始,至今50多年。高温合金的使用温度以平均每年提高10℃的Z温度增加,从当初的650℃发展到今天的门00℃左右。
      在以前,从最早使用的铁基高温合金(亦即耐热钢)、钻基合金,至5年代又开发出被誉为“发动机心脏”的镍基高温合金,在这三不合金中,镍基高温合金是目前使用最为广泛、使用温度最高的卡金材料。为了兼顾抗氧化性及热强性,科研工作者近年来还开用了计算机辅助设计进行合金成分的确定,从而使高温合金分成分渐趋完全合理化。
      在制造工艺上,定向凝固技术,快速凝固技术,粉末冶金,机械合金化等工艺都分别应用于高温合金的话备,使其性能不断提高。
      在许许多多的用途中,高温合金在喷气发动机及燃气轮秒中的应用最引人注目。由于内燃机的热效率在很大程度上决定于燃气进口温度与出口温度之差,该值越大,热效率越高。而辩效率若增高1%,其节能和提高功率的意义也是非凡的。燃炽温度的提高,受制于材料的耐热温度,这是人们一直在寻求提高高温合金使用温度的根本原因之一。
      随着材料的进步以及冷却技术及制备技术的提高,祸轮进口温度已从50年代的800℃发展到1400℃左右,这也是高温合金使用温度最高、效果最显著的领域之一。热效率也相应地从20%升高到30%。

2016-07-13GH4099高温合金


GH4099(GH99)高温合金

GH4099(GH99) 化学成分

C Cr Ni W Mo Al Co Ti

≤0.08 17.00~20.0 余量 5.00~7.00 3.50~4.50 1.70~2.40 5.00~8.00 1.00~1.50

Fe B Mg Ce Mn Si P S

≤2.00 ≤0.005 ≤0.010 ≤0.020 ≤0.40 ≤0.50 ≤0.015 ≤0.015

GH4099(GH99)是 一种高合金化的镍基时效板材合金,用钴、钨、和铝、钛等元素综合强化,使合金具有较高的热强行,900℃一下可以长期使用,最高工作温度可达1000℃。 该合金组织稳定,并具有满意的冷热加工成型和焊接工艺性能,适合于制造航空发动机燃烧室和加力燃烧室等高温板材承力焊接结构件,用该合金制造的大型板材结构件,可在固溶处理后不经时效处理直接使用。主要产品有板材和丝材,也可以生产板材和锻件。

2018-04-13     高温合金具有优异的耐热和抗腐蚀性能,被誉为“发动机的基石”,航空航天是其最重要的下游应用领域,占总使用量的55%,而在诸如船舰燃气轮机、汽车涡轮增压器以及核电等领域也有重要运用。高温合金作为特钢的代表,在线工艺复杂,具有极高的产业壁垒,不仅对质量可靠性和性能稳定性有着严苛的要求,而且试用论证期往往长达数年,只有具备强大技术储备和研发实力的企业才方可进入。未来随着“中国制造2025”和“两机”专项计划的陆续落实,政策红利即将释放,高温合金发展将迎来重要战略机遇期;预计2020年前,研发资助资金投入规模将不少于2000亿元;
多轮驱动、需求迎来大发展
        我国高温合金行业正处于爆发的前夜,目前年均需求总量约1.5万吨,但政策护航、技术突破的双重刺激未来有望引领高温合金的大发展,预计2020年我国年均需求将达到3.5万吨,需求翻翻,年平均增长率接近20%,市场空间高达122亿元。其中,航空领域用高温合金仍是主力,“产业红利释放+战斗机更新换代+通用航空及无人机市场接力”,利好因素叠加,仅航空领域需求便有望突破1.2万吨;除此之外,核电、燃气轮机、涡轮增压器等领域需求也有望获得持续突破,预计需求将达到2万吨,成为接棒航空航天领域增长的市场新蓝海;

高壁垒、高门槛,供给增长有限
        高温合金整个行业具有较为明显的寡头特征,复杂的在线工艺决定了其成材率低、生产周期长,具有极高的技术壁垒。同时,该行业无论是军品还是民品均涉及到产品认证问题,特别是军品的认证,审核严、跨度长,耗时费力,为该行业构筑了天然的进入壁垒。目前我国高温合金总产能约为1.26万吨,实际产量约8000-9000吨左右,和我国庞大的需求相比,未来存在愈2万吨的产能缺口;
        行业景气向上确立,国产替代趋势加强:
        高温合金需求的演变加剧了未来行业的产能短缺,在过去由于技术上的短板造成我国高温合金成材率低、可靠性差,超过一半的产品依赖外资企业实现供货,造成目前行业实际产能利用率仅为75%左右。所以未来行业要取得突破的关键在于克服固有的技术瓶颈,加大国内厂商在供应序列中的话语权。与此同时,“两机”重大专项也将进一步助力我国高温合金产业的腾飞。技术+政策双管齐下背景下,即使仅按照目前国产化率为40%的中性预测,预计到2020年行业产能利用率也有望达到83%左右,若国产化率进一步提升,未来行业将遇到明显的产能瓶颈。

2018-12-24高温合金是最难加工的材料之一,假如45#钢的加工性为100%,则高温合金的相对加工性仅为5%~20%,其切削加工的特点有:①切削力大,是普通钢材的2~4倍。高温合金含有很多高熔点金属元素,构成组织结构致密的奥氏体固溶体,合金的塑性好,原子结构十分稳定,需要很大能量才能使原子脱离平衡位置,因而变形抗力大。②切削温度高,最高可达1000℃左右。高温合金导热系数小,仅为45#钢的1/4~1/3,刀具与工件间摩擦强烈而导热性差,故切削温度高。③加工硬化严重,表面硬度比基体硬度高50%~100%。④塑性变形大,在室温下的延伸率可达30%~50%。⑤刀具易磨损,常见的有扩散磨损、边界磨损、刀尖塑性变形、月牙洼磨损及积屑瘤。由于这些特点,切削高温合金的刀具材料应具有高的强度、高的红硬性、良好的耐磨性和韧性、高的导热性和抗粘接能力等。 

高速钢刀具材料是较早用于加工高温合金的刀具材料,现在由于加工效率等原因正被像硬质合金这样的刀具材料所替换。但在一些成形刀具以及工艺系统刚性差的条件下,采用高速钢刀具材料加工高温合金还是很好的选择。另一方面,加工效率是一种综合的评判,高速钢刀具切削速度低,在某些特定条件下其损失的效率可以通过采用大的切削深度来弥补,由于高速钢刀具材料有更高的强度和韧性,且刃口可以更锋利,产生的切削热更低,加工硬化现象更轻。

2018-08-09高温合金也称热强合金,按其基体元素分为镍基、铁基和钴基高温合金;按制备工艺分为变形和铸造高温合金;按强化方式分为固溶强化型、时效强化(沉淀)型、氧化物弥散强化型和纤维强化型高温合金。高温合金的主要特点是具有足够的高温强度,并在高温氧化性气氛或燃气条件下能够长期工作。为了满足不同用途对高温合金性能的要求,一般采用固溶强货和时效强化的方式对高温合金进行强化。固溶强化就是在Ni-Cr或Fe-Ni-Cr基体的固溶度范围内加入一定量的W、Mo、Nb、Ta、Co等元素,使之形成Ni基或Fe基复杂固溶体,从而导致基体晶格产生畸变,形成内应力,使位错运动受到牵制而产生固溶强化作用。时效强化就是在Fe基或Ni基基体中加入一定量的Al、Ti、Nb、C等元素,使其在热处理过程中从合金内部沉淀析出金属间化合物和不同类型的碳化物,从而产生强化作用。时效强化可以进一步提高高温强度。 

高温合金牌号取自GB/T14992-1992、YB/T5246-1993、YB/T5248-1993。按标准规定,除化学成分和力能性能外,高温合金的主要质量指标还有以下性能。 

低倍组织。在经酸浸的横向试片上无目视可见的缩孔痕迹、空洞、裂纹、针孔、夹杂等,并逐件进行超声波检验,棒材、饼材进行塔型发纹检验,均应符合规定。 

高倍组织。部分棒材、板材进行晶粒度检验,其级别一般为3~7级或5~8级,或报实测数据。 

表面质量。棒材表面无裂纹、折叠、结疤和夹渣,冷拉棒还应光滑、洁净;板材表面光滑平整,无疤痕、重皮、氧化皮、麻坑、过酸洗痕迹等;管材内外表面无裂纹、折叠、龟裂、轧折、分层、结疤等;丝材表面无锈蚀、油污。

2017-05-24高温合金材料的金属间化合物相(intermetallic  compolJnd  phase  of  sueralloy)
过渡族金属元素之间形成的化合物。按晶体结构可分两类,一类称几何密排相(GCP相),另一类称拓扑密排相(cTP相)。
几何密排相为有序结构,高温合金中常见的有如下几种相。
γ’相  化学式是Ni3A1,是Cu3Au型面心立方有序结构。铁基高温合金中γ’与γ基体的点阵错配度一般较小,镍基高温合金中错配度在0.05%~1%之间,随着使用温度升高,错配度减小。由于γ’与7基体的结构相似,所以γ’相在时效析出时具有弥散均匀形核、共格、质点细而间距小、相界面能低而稳定性高等特点。此外,γ’相本身具有较高的强度并且在一定温度范围内随温度上升而提高,同时具有一定的塑性。这些基本特点使γ’相成为高温合金最主要的强化相。时效析出的γ’相常为方形和球形,个别情况呈片状和胞状,主要取决于析出温度和点阵错配度。错配度较小或析出温度较低时易成球形,错配度大或析出温度高时易成方形,错配度很大而析出温度又较低时可成为片状和胞状。高温时效时,γ’相不仅在晶内弥散析出,还可以在晶界析出链状的方形γ’相。在长期时效和使用过程中,γ’相会聚集长大。铸态的一次(γ+γ’)共晶呈花朵状。γ’相中可以溶入合金元素,钴可以置换镍,钛、钒、铌可以置换铝,而铁、铬、钼可置换镍也可置换铝。y相中含铌、钽、钨等难熔元素增加,γ’相的强度也增加。当合金中γ’相含量较少时,y相尺寸大小对强度的影响十分敏感,通常0.1~0.5/xm比较合适。当了’相数量达40%以上时,γ’相尺寸大小对合金强度的影响就不大敏感了,允许有大尺寸的γ’相存在。
μ相 化学式Ni3Ti为密排六方有序相,其组成较固定,不易固溶其他元素.μ相可以直接从γ基体中析出,也可以由高钛低铝(Ti/Al≥2.5)合金中亚稳定的Ni3(Al,TD相转变而成。μ相的金相形态有两种,一种是晶界胞状,另一种为晶内片状或魏氏体形态。高温合金中出现. 因为μ相总是伴随着强度下降,因为μ相本身既无硬化作用而又要消耗一部分γ’相。合金中减少钛含量,增加铝含量,加入适量硼可以抑止胞状Tl相。某些铁基高温合金中加硅使生成G相,造成晶界贫γ’区,可明显地抑止μ相。μ相的析出温度范围为700~950℃左右。冷加工能明显促进μ相形成。
 γ’’相  化学式为NixNb,体心四方有序结构,金相形貌是圆盘形。γ’’相具有高屈服强度(≈1300MPa)的特点,这是因为γ与γ’’之间的点阵错配度较大,共格应力强化作用显著。γ’’相是亚稳定的过渡相,在高温长期保温下,很容易聚集长大并发生γ’’→δ-Ni3Nb转变,因此使用温度不能超过650~700℃。γ’’相析出温度约为550~900℃,析出速度较慢,这有助于减少焊缝热影响区时效裂纹倾向,因此用γ’’相强化的合金有良好的焊接性。Ni—Nb二元系中不出现γ’’亚稳定相,而直接形成稳定的δ-Ni3Nb相,只有加入适量的铁和铬才能形成γ’’相。因此,用r相强化的合金都是铁镍基合金。
δ-Ni3Nb相 Cu3Ti型正交有序结构,金相形貌多数为薄片状,在GH4169合金(中国)中也见到晶界颗粒状的δ-Ni3Nb相,在某些合金中还有胞状δ-Ni3Nb相。该相析出温度约为780~980℃。硅、铌促进δ-Ni3Nb相形成,用钽代替铌可以阻止δ-Ni3Nb相析出。GH4169合金中加入铝、钛可以抑止γ’’→δ-Ni3Nb转变。
 拓扑密排相   晶体结构复杂,原子排列非常紧密,配位数高达14~16,原子间距极短,只存在四面体间隙。高温合金中常见的有如下几种。
σ相  属四方点阵,******配位数为15。σ相的成分范围比较宽,镍基高温合金中为(Cr,Mo)x(Ni,Co)y,式中z、y值在1~7之间,铁基高温合金中常为FeCr(含Mo)型。主要金相形态为颗粒状和片(针)状,数量多时可呈魏氏体组织。σ相常在晶界形核,但也在M23C6颗粒上形核。最快析出的温度范围为750~870C。镍阻止a相形成,铁、钴、铬、钨、钼、铝、钛、硅都促进。相形成。片(针)状a相是裂纹产生和传布的通道,使合金脆化,有时还降低持久强度。晶界a相颗粒常引起沿晶断裂,降低冲击韧性。
Laves相  有MgCu2型、MgZn2型和MgNi2型3种晶体结构,高温合金中多属MgZn2型。Laves相的化学式为B2A,A为大原子半径元素,B为小原子半径元素。低温时效呈细小颗粒状析出,高温时效时析出常呈短棒状或竹叶状,还有晶界颗粒状。析出温度范围较宽,约为650~1100℃,其上限温度随成分而异。由于Laves相倾向于高温析出,所以可以利用它进行细化晶粒工艺,获得细晶材料。铁基高温合金容易产生Laves相。钨、钼、铌、铝、钛、硅等元素都促进Layes相形成,而镍、碳、硼、锆有抑止Laves相的作用。呈细小弥散质点析出的Laves相对合金有一定的硬化作用。大量针状Layes相会降低室温塑性。少量短棒状Laves相没有严重的有害作用。

2020-03-30弯曲晶界组织对持久和蠕变性能也有明显影响,延长持久时间,增加蠕变抗力,改善蠕变塑性。精密合金材料在940℃,215MPa条件下的持久时间,对于标准热处理为65小时,对于弯晶热处理达116.5小时,持久时间约提高1倍。精密合金材料弯曲晶界和平直晶界试样在850℃,550MPa条件的蠕变曲线。蠕变速率与时间的关系曲线。可见,与标准热处理比较,等温弯晶处理增加蠕变断裂时间,蠕变断裂平均寿命提高22%~26%,断裂塑性也有提高。蠕变速率降低约1倍。因此,弯晶热处理可使蠕变强度和塑性同时增加。标准热处理和等温弯晶热处理蠕变速率与时间的关系曲线。
精密合金材料弯曲晶界对疲劳裂纹扩展速率的影响取决于试验频率,频率高,影响不大,频率低,明显降低疲劳裂纹扩展速率。精密合金材料弯曲晶界对精密合金材料疲劳裂纹扩展速率的影响非常大。可以通过试验采用标准紧凑拉伸试样,厚度B=12mm,宽度w=32mm,预制疲劳裂纹长度a0=12mm。试验在闭环液压伺服疲劳试验机上进行,采用三段电阻丝对开炉加热,试验温度850℃3℃;R(Pmin/Pmax)=0.25;波形为三角波;试验频率分别为4.2Hz、1Hz和0.1Hz。裂纹测量方法,采用氧化着色沟线法。
精密合金材料疲劳裂纹扩展可以看出,弯曲晶界对疲劳裂纹扩展的影响与试验频率有关。当频率为4.2Hz时,没有影响。当频率低于1Hz时,弯曲晶界抗疲劳裂纹扩展性能优于标准热处理的直晶组织。精密合金材料断口金相观察表明,频率为4.2Hz时,弯曲晶界和平直晶界试样中,疲劳裂纹均呈穿晶断裂特征。当频率为1Hz时,两者疲劳裂纹属穿晶-沿晶混合裂纹。当频率为0.1Hz时,两者均为沿晶裂纹。所以,凡是引起精密合金材料沿晶断裂的疲劳裂纹扩展试验的频率,弯曲晶界均显示其优越性。

2016-12-20GH2909合金是先进航空发动机实现间隙控制技术的重要工程材料,主要用于制造第四代发动机的涡轮中层机匣、承力环和蜂窝支撑环等间隙控制零件,以减少漏气损失、提高效率、降低耗油率。GH2909是在GH2907合金基础上提高了Si含量,调整了热处理工艺而发展起来的。GH2909是Fe-Ni-Co基时效硬化新型低膨胀高温合金,在650℃以下具有高的强度和塑性、低的热膨胀系数、几乎恒定的弹性模量以及良好的抗氧化和冷热疲劳等综合力学性能,可减少转动部件与静止部件之间的间隙,实现间隙控制,节约能源,降低消耗,提高发动机推力,是航空和航天发动机用的理想高温合金材料,因而在飞机发动机中得到了广泛应用。

多年来由于锻造设备条件的限制:仅有2000吨快锻压机,因而大规格高温合金锻棒生产是某公司高温合金发展的短板。GH2909合金大规格棒材的主要问题是:(1)组织粗大、不均匀,进而导致超声波探伤杂波高,甚至底波衰减严重;(2)性能检测数据波动大。随着锻造设备条件的改善:4500吨快锻压机和1800吨精锻机的投产,并为改善和提高GH2909合金大规格锻材质量,开展了锻造工艺对GH2909合金大规格棒材组织与性能的影响研究。

GH2909合金冶炼工艺路线为真空感应+真空电弧重熔,将Φ440mm电极真空电弧重熔成Φ508mm钢锭,钢锭经均匀化热处理后,锻造生产大规格高温合金锻材。

开坯锻造采用逐级降温大变形锻造工艺,每火次变形量均在30%以上;末火锻造加热温度:1000℃;大部分变形温度:≤955℃,终锻温度:≥870℃;并分别采用三种锻造方法:(1)2000吨快锻压机整支钢锭直接拔长+中切分段+分别一火锻造成材;(2)整支钢锭4500吨快锻压机两镦两拔+中切分段+分别一火1800吨精锻机成材;(3)4500吨快锻压机整支拔长+两端打钳口+中切分段+采用漏盘分别两镦两拔+1800吨一火精锻机成材;然后,在棒材上分别取中心、1/2R和边缘组织和横向性能试样,采用光学显微镜观察显微组织和检测力学性能,成品车光后超声波探伤检测。试验结果表明:

(1)2000吨快锻压机设备吨位局限明显。

(2)方法2锻后棒材横截面上中心、1/2R存在少量混晶组织,边缘晶粒达到8级,组织均匀细小。

(3)方法3锻后棒材横截面上中心、1/2R、边缘组织均匀,各部位晶粒较为一致,晶粒度在6级左右。方法3比方法1室温拉伸屈服强度和抗拉强度均增加70MPa以上,室温拉伸塑性也增加明显,达3%以上;高温拉伸屈服强度和抗拉强度均增加20MPa以上,高温拉伸塑性有所降低;持久寿命降低,持久塑性相当。方法3与方法2各项性能检测结果相当。

因此,方法3,即采用4500吨压机整支拔长+两端打钳口+中切分段+采用漏盘分别两镦两拔+1800吨一火精锻机成材,可使GH2909合金大规格棒材组织均匀细小,获得满足标准指标要求的良好的综合性能。

相关产品

Copyright www.alloy-east.com (复制链接) 丹阳市东方合金有限公司 GH5605,GH3128,GH3044 ,欢迎来电咨询.
企业圈子: