网站地图 | RSS订阅 欢迎光临 丹阳市东方合金有限公司官网

咨询热线:0511-86688876

热门关键词: GH5605,GH3128,GH3044

新闻中心

当前位置:首页 > 新闻信息 > 公司新闻 > GH4037高温合金材料说明

[newsnname]

来源 : www.alloy-east.com   发布时间 : 2017-05-18

GH4037材料说明:
该合金是奥氏体型时效强化的镍基合金,添加总量约4%的铝钛生成γ相进行时效强化,并加入较多的钨、钼进行固溶强化,还添加微量的硼强化晶界。该合金在850℃以下使用,具有高的热强性、良好的综合性能和组织稳定性,广泛用于制造航空发动机涡轮工作叶片,在800-850℃以下长期使用。
GH4037相近牌号:Зи617 XH70BMTTЮ(俄罗斯)
GH4037化学成分:碳C(0.03~0.10)  铬Cr (13.0~16.0)  镍Ni (余) 钨W(5.00~7.00)  钼Mo (2.00~4.00)  铝Al (1.70~2.30) 钛Ti (1.80~2.30)  钒V (0.10~0.50)  铁Fe (≤5.0)  硼B (≤0.020)   铈Ce(≤0.020)  锰Mn (≤0.50)   硅Si (≤0.40)  磷P (不大于0.015)  硫S(不大于0.010)  铜Cu(≤0.07)
GH4037物理性能说明:   
    熔化温度:1178~1346℃,密度:8.4g/cm3
GH4037加工工艺说明:
GH4037熔炼工艺:
GH4037合金采用非真空感应或电弧炉+电渣重熔工艺,或者采用真空感应熔炼+真空自耗或电渣重熔工艺。
GH4037锻造工艺:
   GH4037加热温度为1160℃,终锻温度不低于1000℃,开锻时采用轻、快锤击或小压下量变形,铸造组织破碎后可逐渐增大变形量至35%~40%。
 GH4037零件热处理工艺:
叶片热处理时,需缓慢加热,采用阶梯式加热曲线升温至固溶温度,控温要严格。为使叶片性能稳定,应特别注意二次固溶时的冷却速度不能过快。
叶片机械加工后,必要时为了消除表面层中的残余应力,最终成品零件应时行消除应力火,其规范为:氩气中于950℃加热2h,在加热箱内冷却至700℃,然后空冷。随后再经800℃,时效8h,空冷。
GH4037交货规格及生产时间:
    GH4037弹簧丝交货规格:φ0.08~φ10  交货期10个工作日
    GH4037板材交货规格:0.3~15×1000×L  交货期35个工作日
    GH4037带材交货规格:0.06~2.0×200×L  交货期18个工作日
    GH4037棒材交货规格:φ8~φ400×L  交货期15个工作日
    GH4037焊丝交货规格:φ1.6盘圆、φ1.2盘圆、φ1.6×1000直条、φ2.4×1000直条  交货期12个工作日

 

【返回】

相关标签: [tag]

相关新闻

2017-03-29该合金是单相奥氏体固溶强化型合金,在800℃以下具有中等的热强性和良好的热疲劳性能,1000℃以下抗氧化性能良好,长期使用组织稳定,还具有良好的冷成形性和焊接性能。适宜于850℃以下长期使用的航空发动机燃烧室和加力燃烧室零部件。
GH3039相近牌号:Зи602,XH75MБTЮ(俄罗斯)
GH3039化学成分:碳C(≤0.08)  铬Cr (19.0~22.0)  镍Ni (余)  钼Mo (1.80~2.30)  钛Ti (0.35~0.75)  铌Nb(0.90~1.30) 铁Fe (不大于3.0)   锰Mn (不大于0.40)  铝Al (0.35~0.75)  硅Si (不大于0.80)  磷P (不大于0.020)  硫S(不大于0.012)
技术标准:GB/T14992,GB/T14993
GH3039物理性能说明:   
密度:8.3g/cm3
GH3039加工工艺说明:
GH3039熔炼工艺:
   电弧熔炼、电弧炉或非真空感应炉+电渣重熔或真空电弧重熔以及真空感应炉+电渣或真空电弧重熔工艺。
GH3039锻造工艺:
GH3039合金变形性能良好,锻造加热温度1170~1190℃,终锻温度不低于900℃,一次加热的变形量为50%。
GH3039零件热处理工艺:
  零件的中间固深热处理温度为1050℃,空冷;燃烧室零件的最终热处理温度为1080℃,空冷。要求持久性能较高的零件,固溶温度可提高至1170℃.零件在固溶热处理时的保温时间可根据厚度选择5~20min。

2017-03-13GH3044成形性能
GH3044 钢锭锻造加热温度为1170℃±10℃,终端温度不低于900℃。板坯轧制加热温1190±10℃,薄板热轧加热温度1130℃±10℃,终轧温度不低于800℃;薄板冷轧总压下率30%左右。
GH3044 板材具有良好的冲压件工艺性能。冷轧薄板供应状态的极限深冲系数为K极限=2.06。
2GH3044零件热处理工艺
中间热处理温度为1140℃±10℃,保温3~5min,空冷。最终热处理温度根据零件工作条件决定,对要求良好的热疲劳性能的零件与1150℃固溶,保温3~5min,空冷;对要求有较高热强行的零件于1200℃固溶,保温3~5min,空冷。

2019-12-041、YG---钨钴合金类产品,以YG6来说一般适合加工铸铁,有色金属及其合金与非金属材料连续切削时的粗车,间断切削时的半精车和精车等。 
2、YT---钨钴钛合金产品,以YT5来说适用于碳素钢及合金钢不平整断面于间断切削时的粗车,粗刨,半精刨,非连续面的粗铣及钻孔。    
5-01.jpg                             
3、YW----钨钴钛钽合金产品。 
钛为稀有金属,特征为重量轻、强度高、亦有良好的抗腐蚀能力。由于其稳定的化学性质,良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度,被美誉为“太空金属”。YT合金与YW合金由于含有金属钛,所以综合性能要比YG好。镍基合金不是硬质合金,但它是耐热酸碱腐蚀的最好的材料,无磁性。

2019-07-28     镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。

2018-04-22高温热锻模材料IN718合金 
高温热锻模是指在高温(超过600度)下使用的锻造模具。这种模具的使用条件十分恶劣,不但要承受超高温而且还要承受高的冲击力。现在一般使用的热锻模材料为5CrNiMo 5CrMnMo,H13,3Cr2W8V等钢种,但是这些钢种在使用时,由于承受高温以及大应力,所以这些材料的在温度超过600度时使用情况都不是很好。 
IN718是以Ni为基体,在合金中加入铝,钛以形成金属间化合物进行r’(Ni3AlTi)相沉淀强化。这样就使得该合金具有高温强度高,高温稳定性好,抗氧化性好,热疲劳性能及冲击韧性优异,特别适合制作热锻模,国外已经大批量使用该合金用作高温模具材料。 
在高温的工作环境下5CrNiMo等普通模具 材料的屈服强度和抗拉强度远低于IN718合金,而且随着温度的升高、使用时间的延长屈服强度和抗拉强度急剧降低。IN718合金在高温下,不仅强度远高于5CrNiMo 合金钢,而且随着温度的升高屈服强度和抗拉强度变化不大,并且IN718合金在使用条件下超过1000小时抗拉强度下降小于5%。而5CrNiMo等常规模具钢材料650度高温下累计接触时间不超过8小时就已经因失效而报废。因此,温度愈高,时间愈长,他们之间的差别愈大。

2018-05-16Inconel 718 金相组织结构:
该合金标准热处理状态的组织由γ基体γ’、γ’、δ、NbC相组成
Inconel 718工艺性能与要求:
1、因Inconel718合金中铌含量高,合金中的铌偏析程度与治金工艺直接有关。
2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。
3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。
4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。
5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。
6、合金不同的固溶处理和时效处理工艺会得到不同的材料性能。由于γ”相的扩散速率较低,所以通过长时间的时效处理能使Inconel 718合金获得******的机械性能。

2021-04-21

金属复合材料,是指两种或两种以上不同的金属通过冶金结合形成的复合材料,常见的有钛钢复合、 铜钢复合、 钛锌复合、钛镍复合、镍钢复合、 铜铝复合、镍铜复合等。

  由于可以发挥组元材料各自的优势,实现各组元材料资源的配置,节约贵重金属材料,实现单一金属不能满足的性能要求,金属复合材料在越来越多的领域得到了广泛的应用。

  初次接触金属复合材料,一定会有疑惑,不同的金属,它们是怎样“贴”到一起的?常见的金属复合方法有以下几种,一起来了解。

  爆炸复合法

  利用作能源,在的高速引爆和冲击作用下将不同金属大面积焊接在一起。

  轧制复合法

  在轧机的轧制力作用下,使两种金属的待复合表面发生塑性变形,从而导致金属表层破裂,从破裂处露出的新鲜金属相互接触,在压力作用下使金属间形成冶金结合。根据轧制时的温度可将轧制复合法分为热轧和冷轧。

  ☆ 热轧复合法

  在一定温度下,利用轧机的轧制力将待复合的金属进行轧制,进而形成冶金结合。热轧复合是生产复合板材的主要方法,具有工艺简单、生产效率高等优点,且可以充分发挥轧机的轧制能力和材料在高温下的塑性变形能力,获得的金属复合界面的结合强度高。

  ☆ 冷轧复合法

  冷轧复合是在热轧复合基础上发展起来的,由于轧制复合温度低,可避免金属材料出现不利于结合的相变、显微组织变化,以及避免脆性金属间化合物的形成。冷轧生产的复合材料性能稳定,而且可以实现多种材料的轧制复合,但是在轧制过程中基体金属的变形率高达60%~70%。

  爆炸-轧制复合法

  爆炸-轧制复合法是指利用爆炸复合技术将需要复合的两种或两种以上的金属板,按一定的厚度配比焊接制成复合板坯,然后在根据不同的条件和要求,热轧或冷轧成所需厚度规格的复合板。

  粉末冶金法

  粉末冶金法是将混合均匀的金属粉末平铺在基体金属表面进行压制,然后在保护性气氛下高温烧结,经切削加工制成复合材料成品。

  扩散复合法

  扩散复合法是将两种金属紧密贴合,在一定温度和压力下保持一段时间,使接触面之间的原子相互扩散形成冶金结合。

  离心铸造法

  离心铸造法是将熔融的合金熔液浇入旋转的基体金属铸型中,在离心力的作用下,合金熔液附着于铸型内壁,快速冷却凝固后,与基体金属紧密结合在一起。

  浇铸复合法

  浇铸复合法是将基体金属进行表面预处理并预热到一定温度,然后将其浸入装满复层金属液的铸模型腔中,或是将基体金属放入铸模型腔中,然后向铸模型腔浇铸复层金属液,液态金属凝固冷却后形成复合材料。

  连铸连轧复合法

  连铸连轧复合法结合了传统的铸造法与轧制法,将高温金属液连续浇铸在基体钢板表面,使液态金属在半凝固状态与固态基体金属同时在轧机上连续轧制,利用轧机的轧制力和液态金属的高温扩散使两种金属形成冶金结合。

2021-01-27    钛合金和铝合金在正常加工条件下不具有超塑性。为了获得钛合金和铝合金超塑性变形的晶粒组织,通常需要进行特殊的热处理。铝合金材料,特别是因其超塑性而开发的。特种合金制造商分析钛合金材料和铝合金材料的性能
   铝合金是一种中等强度合金,其力学性能与6061和2219相似,通常用于轻载和非结构应用。已经为80多架不同的飞机生产了100多个部件,包括空客A340、Aerospatiale ATR和波音777,服务于世界许多。例如,波音777叶片前照灯盒就是通过SPF加工而成。在欧洲战斗机项目中,正弦波波束、辅助动力单元(APU)剪力墙、坦克剪力墙、门、箱、防火墙、出口等SPF部件被广泛考虑。基于这些使用经验,SPF铝组件应更多地用于商用飞机。
   钛合金材料的SPF和DB组合制造方法还没有商业化的铝合金材料方法。铝合金材料中普遍存在的强氧化膜阻碍了DB的有效利用。克服这一问题的发展项目正在进行中,但没有取得成功。钛合金材料的SPF和DB技术已基本成熟。这两种机型目前都在F-15E飞机上使用,具有显著的优势。SPF/DB的强度特性与锻造合金相同。但是,连接的表面必须非常干净。否则,强度会降低。

2019-06-05   高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。

   高温合金又称超合金,使用温度范围为550~1100°C。英国于40年代最早研制成镍基合金尼蒙尼克75,用作燃气涡轮发动机的涡轮叶片材料。1945~1975年,高温合金有了很大发展,涡轮进口温度平均每年提高15°C(涡轮前温度每提高100°C,能使发动机推力增加15%)。随着合金化程度的提高,高温合金的锻压变形愈加困难,因此铸造合金逐渐得到发展和应用。镍基铸造合金的高温强度高,组织比较稳定,热疲劳性能好,是制造涡轮工作叶片和导向叶片的理想材料。从60年代初发展定向凝固铸造涡轮叶片以来,由于消除了垂直于应力方向的横向晶界,叶片的热疲劳寿命提高大约8倍,蠕变断裂寿命提高2倍多,塑性提高4倍。 定向凝固单晶涡轮叶片则完全消除了晶界,与普通铸造涡轮叶片相比,工作温度提高近100°C。

   以难熔金属钨、钼、钽、铌为基体,添加固溶强化元素形成以碳化物沉淀相和热加工方式强化的高温材料。它的熔点和高温强度大大超过高温合金和弥散强化合金,钨-钼和铌-钨-钽合金在1316°C时的拉伸强度分别达到 510和 210兆帕(约51和21公斤/毫米2)。钼合金在1093°C时的拉伸强度也能达到 490兆帕(约49公斤/毫米2),都是制造航空燃气涡轮发动机涡轮叶片、导向叶片和燃烧室的优良材料。缺点是受高温空气侵蚀时极易脆化,须在涂层的保护下使用。铌合金已被用于制造短时间工作的火箭发动机燃烧室和喷管,也有用钽制造这类高温部件的。用钨合金丝或钨纤维增强高温合金制成高温复合材料,可以弥补难熔合金的缺点,用作先进燃气涡轮发动机的涡轮叶片。

2017-01-20     760℃高温材料发展过程从20世纪30年代后期起,英、德、美等国就开始研究耐高温合金。第二次世界大战期间,为了满足新型航空发动机的需要,耐高温合金的研究和使用进入了蓬勃发展时期。40年代初,英国首先在80Ni-20Cr合金中加入少量铝和钛,形成γ‘相(gamma prime)以进行强化,研制成第一种具有较高的高温强度的镍基合金。同一时期,美国为了适应活塞式航空发动机用涡轮增压器发展的需要,开始用Vitallium钴基合金制作叶片。
此外,美国还研制出Inconel镍基合金,用以制作喷气发动机的燃烧室。以后,冶金学家为进一步提高合金的高温强度,在镍基合金中加入钨、钼、钴等元素,增加铝、钛含量,研制出一系列牌号的合金,如英国的“Nimonic”,美国的“Mar-M”和“IN”等;在钴基合金中,加入镍、钨等元素,发展出多种耐高温合金,如X-45、HA-188、FSX-414等。由于钴资源缺乏,钴基耐高温合金发展受到限制。
40年代,铁基耐高温合金也得到了发展,50年代出现A-286和Incoloy901等牌号,但因高温稳定性较差,从60年代以来发展较慢。苏联于1950年前后开始生产“ЭИ”牌号的镍基耐高温合金,后来生产“ЭП”系列变形耐高温合金和ЖС系列铸造耐高温合金。中国从1956年开始试制耐高温合金,逐渐形成“GH”系列的变形耐高温合金和“K”系列的铸造耐高温合金。70年代美国还采用新的生产工艺制造出定向结晶叶片和粉末冶金涡轮盘,研制出单晶叶片等耐高温合金部件,以适应航空发动机涡轮进口温度不断提高的需要。

相关产品

Copyright www.alloy-east.com (复制链接) 丹阳市东方合金有限公司 GH5605,GH3128,GH3044 ,欢迎来电咨询.
企业圈子: