网站地图 | RSS订阅 欢迎光临 丹阳市东方合金有限公司官网

咨询热线:0511-86688876

热门关键词: GH5605,GH3128,GH3044

新闻中心

当前位置:首页 > 新闻信息 > 公司新闻 > 新型高温热锻模材料IN718合金

[newsnname]

来源 : www.alloy-east.com   发布时间 : 2016-12-09

      高温热锻模是指在高温(超过600度)下使用的锻造模具。这种模具的使用条件十分恶劣,不但要承受超高温而且还要承受高的冲击力。现在一般使用的热锻模材料为5CrNiMo 5CrMnMo,H13,3Cr2W8V等钢种,但是这些钢种在使用时,由于承受高温以及大应力,所以这些材料的在温度超过600度时使用情况都不是很好。

IN718是以Ni为基体,在合金中加入铝,钛以形成金属间化合物进行r’(Ni3AlTi)相沉淀强化。这样就使得该合金具有高温强度高,高温稳定性好,抗氧化性好,热疲劳性能及冲击韧性优异,特别适合制作热锻模,国外已经大批量使用该合金用作高温模具材料。 

在高温的工作环境下5CrNiMo等普通模具 材料的屈服强度和抗拉强度远低于IN718合金,而且随着温度的升高、使用时间的延长屈服强度和抗拉强度急剧降低。IN718合金在高温下,不仅强度远高于5CrNiMo 合金钢,而且随着温度的升高屈服强度和抗拉强度变化不大,并且IN718合金在使用条件下超过1000小时抗拉强度下降小于5%。而5CrNiMo等常规模具钢材料650度高温下累计接触时间不超过8小时就已经因失效而报废。因此,温度愈高,时间愈长,他们之间的差别愈大。  

在600℃ 时IN718的屈服强度是5CrNiMo 的2.4倍,而在650℃ IN718是5CrNiMo 的3.4倍。由于IN718合金具有这种优良的高温强度,锻造时在温度升高到500-800℃时,IN718不变形。 

IN718合金的高温硬度在热锻模的工作温度范围也明显高于5CrNiMo 而且从室温至800℃,硬度保持在同一水平,与此相反5CrNiMo 从400-600℃硬度几乎成直线降低。在500℃时,两种材料硬度相同,到600℃时IN718合金的硬度高于 5CrNiMo一倍以上,良好的高温硬度使IN718合金具有良好的高温耐磨性。
一般的热作模具钢的高温稳定性都不好,从450℃到600℃回火由于组织中碳化物球化,所以钢一直在软化,硬度不断降低,而IN718合金为单一奥氏体钢,不存在相变。在正常热处理后,在600-700℃加热长达1000小时,组织稳定,硬度变化很小。因此5CrNiMo等热作模具钢使用过程中受锻件加热,是一个回火软化过程,材料强度不断降低,而IN718可以保持良好的的强度性能,这一特点对于制作热锻模来说极为有利。 

热锻模在高温下工作,因此材料必须具有良好的抗氧化性能。Cr是主要的抗氧化元素。5CrNiMo钢中仅含有0.7%左右的Cr表面在高温下形成低含量的氧化膜(Fe3Cr)2O3 。这种氧化膜多孔,而且很容易被工件材料所磨掉。IN718合金含有18%的Cr,所以在表面形成致密而且防护性良好的以Cr2O3为主的氧化膜。抗氧化良好。 

综上所述,IN718合金非常适用于600度以上使用的热锻模、冲头、热挤压模、压铸模等材料。它在抚顺钢厂的锻锤衬垫上的使用寿命是5CrNiMo钢使用寿命的15倍以上。

 

【返回】

相关标签: [tag]

相关新闻

2018-05-11高温合金是在高温严酷的机械应力和氧化、腐蚀环境下应用的一类合金。随着科技事业的发展,高温合金逐渐形成六个较为完整的部分。
一、变形高温合金
变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。
1、固溶强化型合金
使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。
2、时效强化型合金
使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。
变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。
二、铸造高温合金
铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是:
1.具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。
2.具有更广阔的应用领域由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。
根据铸造合金的使用温度,可以分为以下三类:
第一类:在-253~650℃使用的等轴晶铸造高温合金这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、屈服强度850MPa、拉伸塑性15%;650℃,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。
第二类:在650~950℃使用的等轴晶铸造高温合金这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950℃时,拉伸强度大于700MPa、拉伸塑性大于6%;950℃,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。
第三类:在950~1100℃使用的定向凝固柱晶和单晶高温合金这类合金在此温度范围内具有优良的综合性能和抗氧化、抗热腐蚀性能。例如DD402单晶合金,1100℃、130MPa的应力下持久寿命大于100小时。这是国内使用温度最高的涡轮叶片材料,适用于制作新型高性能发动机的一级涡轮叶片。
随着精密铸造工艺技术的不断提高,新的特殊工艺也不断出现。细晶铸造技术、定向凝固技术、复杂薄壁结构件的CA技术等都使铸造高温合金水平大大提高,应用范围不断提高。
三、粉末冶金高温合金
采用雾化高温合金粉末,经热等静压成型或热等静压后再经锻造成型的生产工艺制造出高温合金粉末的产品。采用粉末冶金工艺,由于粉末颗粒细小,冷却速度快,从而成分均匀,无宏观偏析,而且晶粒细小,热加工性能好,金属利用率高,成本低,尤其是合金的屈服强度和疲劳性能有较大的提高。
FGH95粉末冶金高温合金,650℃拉伸强度1500MPa;1034MPa应力下持久寿命大于50小时,是当前在650℃工作条件下强度水平最高的一种盘件粉末冶金高温合金。粉末冶金高温合金可以满足应力水平较高的发动机的使用要求,是高推重比发动机涡轮盘、压气机盘和涡轮挡板等高温部件的选择材料。
四、氧化物弥散强化(ODS)合金
是采用独特的机械合金化(MA)工艺,超细的(小于50nm)在高温下具有超稳定的氧化物弥散强化相均匀地分散于合金基体中,而形成的一种特殊的高温合金。其合金强度在接近合金本身熔点的条件下仍可维持,具有优良的高温蠕变性能、优越的高温抗氧化性能、抗碳、硫腐蚀性能。
目前已实现商业化生产的主要有三种ODS合金:
MA956合金在氧化气氛下使用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。
MA754合金在氧化气氛下使用温度可达1250℃并保持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制作航空发动机导向器蓖齿环和导向叶片。
MA6000合金在1100℃拉伸强度为222MPa、屈服强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。
五、金属间化合物高温材料
金属间化合物高温材料是近期研究开发的一类有重要应用前景的、轻比重高温材料。十几年来,对金属间化合物的基础性研究、合金设计、工艺流程的开发以及应用研究已经成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制备加工技术、韧化和强化、力学性能以及应用研究方面取得了令人瞩目的成就。
Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等优点,可以使结构件减重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀性能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新材料。
六、环境高温合金
在民用工业的很多领域,服役的构件材料都处于高温的腐蚀环境中。为满足市场需要,根据材料的使用环境,归类出系列高温合金。
1、高温合金母合金系列
2、抗腐蚀高温合金板、棒、丝、带、管及锻件
3、高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件
4、耐玻璃腐蚀系列产品
5、环境耐蚀、硬表面耐磨高温合金系列
6、特种精密铸造零件(叶片、增压涡轮、涡轮转子、导向器、仪表接头)
7、玻棉生产用离心器、高温轴及辅件8、钢坯加热炉用钴基合金耐热垫块和滑轨
9、阀门座圈
10、铸造“U”形电阻带
11、离心铸管系列
12、纳米材料系列产品
13、轻比重高温结构材料
14、功能材料(膨胀合金、高温高弹性合金、恒弹性合金系列)
15、生物医学材料系列产品
16、电子工程用靶材系列产品
17、动力装置喷嘴系列产品
18、司太立合金耐磨片
19、超高温抗氧化腐蚀炉辊、辐射管。

2018-11-23    我们之前推出的特钢报告对整个特钢行业做出了全面的梳理,本篇报告则重点关注高温合金的发展现状和未来,以及下游航空航天核电和军工领域大发展对高温合金带来巨大的需求空间,我国相关的高温合金企业面临巨大的进口替代空间和行业发展空间,对相关标的维持推荐。
我国钢铁产业已经进入成熟阶段,普通大类特钢整体产量也进入峰值区间。2015上半年,中国特钢协会成员单位粗钢产量为6222万吨,同比减少2.91%。其中,普通钢同比减少4.14%,优质钢同比减少1.16%,特殊钢同比减少3.69%。特钢行业当前处于较为低效的运行状态,低端产品相对过剩,而高端产品相对不足。未来特钢行业的重点发展方向仍然是高端非标定制化产品。
  高温合金作为工业皇冠上的明珠材料,是特钢领域中最为高端的产品之一。
  高温合金材料最初主要应用于航空航天领域,由于其良好的耐高温,耐腐蚀等性能,逐渐被应用到电力,船舰,汽车,冶金,玻璃制造,原子能等工业领域,从而大大的拓展了应用领域。随着高温合金的发展,新型高温合金材料的出现,高温合金的市场需求处于逐步扩大和增长的趋势。从全球范围而言,高温合金年消费量达到28万吨,市场空间超过100亿美元。主要应用在航空航天领域(55%),其次是能源电力领域(20%),再次是机械汽车领域(10%)。而这一需求量随着未来全球高端工业发展将会继续提升。
   我国高温合金经过之前的快速发展,当前已经初具万吨左右的规模,未来随着我国国防军工航空航天等领域高端需求快速增长,高温合金面临着巨大的需求增长空间和进口替代空间。近今年来,我国大力推进的大飞机国产化和核电国产化等行业规划将会给高温合金带来巨大的需求空间。谨慎保守估计,未来20年我国每年高温合金的年平均需求量将会达到3.5万吨,需求总量将超过70万吨,其中航空发动机领域25万吨左右,燃气轮机领域12万吨左右,汽车领域21万吨左右,核电领域6万吨左右,市场空间有望继续提升。

2020-08-26

合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。钛的工业化生产是1948年开始的。航空工业发展的需要,使钛工业以平均每年约 8%的增长速度发展。目前世界钛合金加工材年产量已达4万余吨'钛合金牌号近30种。使用最广泛的钛合金是Ti-6Al-4V(TC4)'Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。

钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的冷凝器,石油精炼和海水淡化的加热器以及环境污染控制装置等。钛及其合金已成为一种耐蚀结构材料。此外还用于生产贮氢材料和形状记忆合金等。

2017-01-10高温合金是最难加工的材料之一,假如45#钢的加工性为100%,则高温合金的相对加工性仅为5%~20%,其切削加工的特点有:①切削力大,是普通钢材的2~4倍。高温合金含有很多高熔点金属元素,构成组织结构致密的奥氏体固溶体,合金的塑性好,原子结构十分稳定,需要很大能量才能使原子脱离平衡位置,因而变形抗力大。②切削温度高,最高可达1000℃左右。高温合金导热系数小,仅为45#钢的1/4~1/3,刀具与工件间摩擦强烈而导热性差,故切削温度高。③加工硬化严重,表面硬度比基体硬度高50%~100%。④塑性变形大,在室温下的延伸率可达30%~50%。⑤刀具易磨损,常见的有扩散磨损、边界磨损、刀尖塑性变形、月牙洼磨损及积屑瘤。由于这些特点,切削高温合金的刀具材料应具有高的强度、高的红硬性、良好的耐磨性和韧性、高的导热性和抗粘接能力等。 

高速钢刀具材料是较早用于加工高温合金的刀具材料,现在由于加工效率等原因正被像硬质合金这样的刀具材料所替换。但在一些成形刀具以及工艺系统刚性差的条件下,采用高速钢刀具材料加工高温合金还是很好的选择。另一方面,加工效率是一种综合的评判,高速钢刀具切削速度低,在某些特定条件下其损失的效率可以通过采用大的切削深度来弥补,由于高速钢刀具材料有更高的强度和韧性,且刃口可以更锋利,产生的切削热更低,加工硬化现象更轻。 

用于加工高温合金的高速钢,常有钴高速钢、含钴超硬高速钢和粉末冶金高速钢等高性能高速钢。 

2019-07-28在外磁场作用下容易磁化、去除外磁场后磁感应强度(磁感)又基本消失的磁性合金。磁滞回线面积小且窄,矫顽力(Hc)一般低于10 Oe(见精密合金)。19世纪末用低碳钢板制造电机和变压器铁芯。1900年磁性更高的硅钢片很快取代了低碳钢,用来制造电力工业的产品。1917年出现了Ni-Fe合金以适应当时电话系统的需要。后来又出现了具有不同磁特性的Fe-Co合金(1929)、Fe-Si-Al合金(1936)和Fe-Al合金(1950)以满足特殊用途。中国于1953年开始生产热轧硅钢片。50年代末开始研究Ni-Fe和Fe-Co等软磁合金,60年代陆续开始生产一些主要的软磁合金。70年代开始生产冷轧硅钢带。

软磁合金的主要磁特性 是:①矫顽力(Hc)和磁滞损耗(Wh)低;②电阻率(ρ)较高,涡流损耗(We)低;③起始磁导率(μ0)和大磁导率(μm)高;某些合金在低磁场范围内磁导率(B/H)保持恒定;④饱和磁感(Bs)高;⑤某些合金磁滞回线呈矩形,矩形比即剩磁大磁感(Br/Bm)高。这些磁性能同合金的结构状态和成分密切相关。合金中的碳、硫、氮和氧等杂质对磁性特别有害,因为它们使晶格畸变,难以磁化,碳和氮还会引起磁时效现象。软磁合金一般要求成品晶粒尺寸大,以便降低Hc和Wh值。一般铁磁性金属的磁性随晶轴方向不同而异,如铁的<100>方向易于磁化,<111>方向难于磁化。因此控制晶粒取向可以在材料的特定方向获得磁性能。铁的电阻率(ρ)低,添加某些合金元素可以提高ρ 值,加硅和铝的效果为明显。在铁中加入任何合金元素(除钴外),都会使它的饱和磁感Bs降低。

2021-05-12异种金属焊接这些经典常识
  异种金属焊接所存在的一些固有问题阻碍了它的发展,如异种金属熔合区的构成和性能,异种金属焊接结构的破坏多半发生在熔合区,由于靠近熔合区各段上焊缝结晶特点不同,又易形成性能不好的、成分变化的过渡层。
  另外,由于处在高温的时间长,这一区域的扩散层会扩大,会进一步使金属的不均匀性增加。而且异种金属焊接时或焊后经热处理或经高温运行后,经常发现低合金一侧的碳通过焊缝边界向高合金焊缝中“迁移”的现象,分别在熔合线两侧形成脱碳层和增碳层,在低合金一侧母材形成脱碳层,在高合金焊缝一侧形成增碳层。
  防碍和阻止异种金属结构的使用和发展主要表现在以下几个方面:
  1.在室温下,异种金属焊接接头区的机械性能(如拉伸、冲击、弯曲等)一般优于被焊母材的性能,但高温下或高温长期运行后,接头区的性能劣于母材。
  2.在奥氏体焊缝与珠光体母材之间存在一个马氏体过渡区,该区韧性较低,是一个高硬度脆性层,也是导致构件失效破坏的薄弱区,它会降低焊接结构的使用可靠性。
  3.焊后热处理或高温运行过程中碳迁移会导致在熔合线两侧分别形成增碳层和脱碳层。一般认为脱碳层由于碳的减少而导致该区域组织、性能发生较大变化(一般是劣化),从而使得该区域容易在服役过程中发生早期失效。很多服役中的高温管线或者试验中的高温管线的失效部位都集中在脱碳层。
  4.失效与时间,温度和交变应力等条件有关。
  5.焊后热处理不能消除接头区的残余应力分布。
  6.化学成分的不均匀性。
  异种金属焊接的时候,由于焊缝两侧的金属和焊缝的合金成分有着明显的差别,焊接过程中,母材和焊材都会熔化并相互混合,混合的均匀程度随着焊接工艺的改变而改变,而且焊接接头不同的位置,混合均匀程度也有很大差异,这就造成了焊接接头化学成分的不均匀性。
  7.金相组织的不均匀性。
  由于焊接接头化学成分的不连续,经历了焊接热循环后,焊接接头各个区域出现不同的组织,往往在某些区域出现极其复杂的组织结构。
  8.性能的不连续性。
  焊接接头的化学成分和金相组织的差异,带来了焊接接头力学性能的不同。沿焊接接头的各个区域强度、硬度、塑性、韧性、冲击性能、高温蠕变、持久性能都有很大差别。这种显著的不均匀性使得焊接接头不同区域在相同的条件下,表现出来的行为有很大的差异,出现弱化区域和强化区域,尤其是在高温的条件下,异种金属焊接接头在服役过程中经常出现早期失效。
  二
  不同焊接方法焊接异种金属时的特点
  大多数焊接方法都可用于异种金属的焊接,但在选择焊接方法及制定工艺措施时,仍应考虑异种金属焊接时的特点。根据母材和焊接接头不同的要求,熔焊、压焊及其他焊接方法在异种金属焊接中都有所应用,但也都各有其优缺点。
  1.熔焊
  异种金属焊接中应用较多的是熔焊方法,常用的熔焊方法有焊条电弧焊、埋弧焊、气体保护电弧焊、电渣焊、等离子弧焊、电子束焊、激光焊等。为了减少稀释,降低熔合比或控制不同金属母材的熔化量,通常可选用热源能量密度较高的电子束焊、激光焊、等离子弧焊等方法。
  为了减小熔深,可以采取间接电弧、摆动焊丝、带状电极、附加不通电焊丝等工艺措施。但无论如何,只要是熔焊,总有部分母材熔入焊缝而引起稀释,另外,还会形成诸如金属间化合物、共晶体等。为了减轻这类不利影响,必须控制和缩短金属在液态或高温固态下的停留时间。
  然而,尽管熔焊方法和工艺措施不断改进和完善,却仍然难以解决所有异种金属焊接时的问题,因为金属种类繁多,性能要求又多种多样,接头形式又各不相同,许多情况下还需要采用压焊或其他的焊接方法来解决特定的异种金属接头的焊接问题。
  2.压焊
  大多数压焊方法都只将被焊金属加热至塑性状态或甚至不加热,而以施加一定的压力为基本特征。与熔焊相比,在焊接异种金属接头时压焊具有一定的优越性,只要接头形式允许,焊接质量又能满足要求,采用压焊往往是比较合理的选择。
  压焊时,异种金属交界表面可以熔化,也可以不熔化,但由于有压力的作用,即使表面有熔化金属存在,也会被挤压而排出(如闪光焊和摩擦焊),只有少数情况下压焊后还保留了曾经熔化的金属(如点焊)。
  压焊由于不加热或加热温度低,可以减轻或避免热循环对母材金属性能的不利影响,防止产生脆性的金属间化合物。某些形式的压焊甚至能将已产生的金属间化合物从接头中挤压出去。此外,压焊时也不存在因稀释而引起的焊缝金属性能变化问题。
  不过,大多数压焊方法对接头形式是有一定要求的,例如点焊、缝焊、超声波焊必须用搭接接头;摩擦焊时至少有一个工件必须具有旋转体的截面;爆炸焊只适用于较大面积的连接等。压焊设备目前也还不普及。这些无疑地都限制了压焊的应用范围。
  3.其他方法
  除熔焊和压焊外,还有一些可以用于异种金属焊接的方法。例如钎焊就是钎料与母材之间的异种金属焊接方法,不过这里所讨论的则是较特殊的钎焊方法。
  有一种方法称作熔焊——钎焊,即对异种金属接头中低熔点母材一侧为熔焊,对高熔点母材—侧为钎焊。而且通常是以低熔点母材相同的金属为钎料。因此,钎料与低熔点母材之间就是同种金属的熔焊过程,不存在特殊困难。
  钎料与高熔点母材之间则是钎焊过程,母材不发生熔化、结晶,可以避免许多焊接性方面的问题,但要求钎料对母材能良好润湿。
  另一种方法称作共晶钎焊或共晶扩散钎焊。这是将异种金属接触表面加热到一定温度,使两种金属在接触表面处形成低熔点的共晶体,该低熔点共晶体在此温度下呈液态,实质上成了一种不用外加钎料的钎焊方法。
  当然,这要求两种金属之间能够形成低熔点的共晶体。异种金属扩散焊时加入中间层材料,在很低压力下加热使中间层材料熔化,或与被焊金属接触形成低熔点共晶体,此时形成的薄层液体,经一定时间的保温过程,使中间层材料全部扩散到母材中并均匀化,就能形成没有中间材料的异种金属接头。
  这类方法在焊接过程中都会出现少量液态金属。因而又被称作液相过渡焊,他们的共同特点就是接头中不存在铸造组织。
  三
  焊接异种金属的注意事项
  1.考虑焊件的物理、力学性能和化学成分
  (1)根据等强度的观点,选择满足母材力学性能的焊条,或结合母材的可焊性,改用非等强度而焊接性好的焊条,但考虑焊缝的结构形式,以满足等强度、等刚度要求。
  (2)使其合金成分符合或接近母材。
  (3)母材含C、S、P有害杂质较高时,应选择抗裂性能和抗气孔性能较好的焊条。建议选用氧化钛钙型焊条。如果尚不能解决,可选用低氢钠型焊条。
  2.考虑焊件的工作条件和使用性能
  (1)在承受动载荷和冲击载荷的情况下,除保证强度外,对冲击韧性、延伸率均有较高要求,应一次选用低氢型、钛钙型和氧化铁型焊条。
  (2)接触腐蚀介质的,必须根据介质的种类、浓度、工作温度以及区分是一般服饰还是晶间腐蚀等,选用合适的不锈钢焊条。
  (3)在磨损条件下工作时,应区分是一般还是受冲击磨损,是常温还是高温下磨损。
  (4)非常温条件下工作时,应选用相应的保证低温或高温力学性能的焊条。
  3.考虑焊件的集合形状复杂程度,刚度大小,焊接破口的制备情况和焊接位置。
  (1)形状复杂或大厚度的焊件,焊缝金属在冷却时收缩应力大,容易产生裂纹,必须选用抗裂性能强的焊条,如低氢型焊条,高韧性焊条或氧化铁型焊条。
  (2)受条件限制不能翻转的焊件,需选用能全位置焊接的焊条。
  (3)焊接部位难以清理的焊件,选用氧化性强的,对氧化皮和油污不敏感的酸性焊条,以免产生气孔等缺陷。
  4.考虑施焊工地设备
  在没有直流焊机的地方,不宜选用限用直流电源的焊条,而应选用交直流电源的焊条。某些钢材(如珠光体耐热钢)需焊后消除热应力,但受设备条件限制(或本身结构限制)不能进行热处理时。应改用非母材金属材料焊条(如奥氏体不锈钢),可不必焊后热处理。
  5.考虑改善焊接工艺和保护工人的身体健康
  在酸性焊条和碱性焊条都可以满足要求的地方,应尽量采用酸性焊条。
  6.考虑劳动生产率和经济合理性
  在使用性能相同的情况下,应尽量选用价格较低的酸性焊条,而不用碱性焊条,在酸性焊条中又以钛型、钛钙型为贵,根据我国矿藏资源情况,应大力推广钛铁型药皮的焊条。

2020-03-30弯曲晶界组织对持久和蠕变性能也有明显影响,延长持久时间,增加蠕变抗力,改善蠕变塑性。精密合金材料在940℃,215MPa条件下的持久时间,对于标准热处理为65小时,对于弯晶热处理达116.5小时,持久时间约提高1倍。精密合金材料弯曲晶界和平直晶界试样在850℃,550MPa条件的蠕变曲线。蠕变速率与时间的关系曲线。可见,与标准热处理比较,等温弯晶处理增加蠕变断裂时间,蠕变断裂平均寿命提高22%~26%,断裂塑性也有提高。蠕变速率降低约1倍。因此,弯晶热处理可使蠕变强度和塑性同时增加。标准热处理和等温弯晶热处理蠕变速率与时间的关系曲线。
精密合金材料弯曲晶界对疲劳裂纹扩展速率的影响取决于试验频率,频率高,影响不大,频率低,明显降低疲劳裂纹扩展速率。精密合金材料弯曲晶界对精密合金材料疲劳裂纹扩展速率的影响非常大。可以通过试验采用标准紧凑拉伸试样,厚度B=12mm,宽度w=32mm,预制疲劳裂纹长度a0=12mm。试验在闭环液压伺服疲劳试验机上进行,采用三段电阻丝对开炉加热,试验温度850℃3℃;R(Pmin/Pmax)=0.25;波形为三角波;试验频率分别为4.2Hz、1Hz和0.1Hz。裂纹测量方法,采用氧化着色沟线法。
精密合金材料疲劳裂纹扩展可以看出,弯曲晶界对疲劳裂纹扩展的影响与试验频率有关。当频率为4.2Hz时,没有影响。当频率低于1Hz时,弯曲晶界抗疲劳裂纹扩展性能优于标准热处理的直晶组织。精密合金材料断口金相观察表明,频率为4.2Hz时,弯曲晶界和平直晶界试样中,疲劳裂纹均呈穿晶断裂特征。当频率为1Hz时,两者疲劳裂纹属穿晶-沿晶混合裂纹。当频率为0.1Hz时,两者均为沿晶裂纹。所以,凡是引起精密合金材料沿晶断裂的疲劳裂纹扩展试验的频率,弯曲晶界均显示其优越性。

2019-12-18  粉体材料模压成形是将一定质量(体积)的合金粉末与无机非金属粉末及一定成型剂的混合物装入刚性模腔,然后通过上、下模冲沿单一轴向方向对粉末施加一定大小的压力,使松散的粉料在封闭的模腔中压缩成具有一定尺寸、形状、密度与强度的压坯,再将压坯从模中脱出的工艺过程。整个过程包括装粉、压制和脱模三个步骤。

  模压成形的基本目的是要松散的粉末体压实,使之成为具有一定尺寸、形状、密度和强度的半成品压坯,为下一步的烧结打下基础。一般来说,在压制过程中,要达到一定的尺寸、形状和平均密度是比较容易的,但要使压坯密度分布均匀却比较困难。形状越复杂,越难使压坯密度分布均匀。压坯密度分布的不均匀性不但最终影响产品的力学性能,而且也是引起压坯开裂、分层、掉边掉角、烧结收缩不均、产品变形、精度超差等压制废品的重要原因。

2019-07-28     镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。

2017-04-13GH605/L605/HS25/WF-11/AIS1670/UNSR30605/KC20WN钴基变形高温合金
材料牌号:GH605
相近牌号:L605/HS25/WF-11/AIS1670
美国牌号:UNSR30605
法国牌号:KC20WN
一、GH605概述
    GH605是以20Cr和15W固溶强化的钴基高温合金,在815℃以下具有中等的持久和蠕变强度,在1090℃以下具有优良的抗氧化性能,同时具有满意的成形、焊接等工艺性能。适用于制造航空发动机燃烧室和导向叶片等要求中等强度和优良的高温抗氧化性能的热端高温零部件。也可在航天发动机和航天飞机上使用。可生产供应各种变形产品,如薄板、中板、带材、棒材、锻件、丝材以及精密铸件。
    1.1 GH605材料牌号 GH605。
    1.2 GH605相近牌号 L605,HS25,WF-11,AlS1670,UNSR30605(美国)、KC20WN(法国)。
    1.3 GH605材料的技术标准    
    1.4 GH605化学成分  见表1-1。
                                         表1-1                                     % 
C Cr Ni W Co Mn Fe Si P S
不大于
0.05~0.15 19.0~21.0 9.0~11.0 14.0~16.0 余 1.0~2.0 3.0 0.40 0.040 0.030 
    1.5 GH605热处理制度 板材、带材:1175~1230℃,快速冷却;环形件:1175~1230℃,保温不少于15min,水冷或快速空冷;棒材(机加工用):1175~1230℃,快速冷却。
    1.6 GH605品种规格与供应状态 可以供应δ≤14mm的热轧中板、δ≤4mm的冷轧板材、δ0.05~0.80mm的冷轧带材、δ0.20~0.80mm的冷硬带材、d0.2~10.0mm的焊丝、d≤300mm的棒材和各种直径及壁厚的环形件。中板和薄板经固溶、碱酸洗、切边后供应;带材经固溶、碱酸洗、切边后成卷供应;冷硬带材经固溶、冷轧、退火、抛光和切边后供应;焊丝以硬态、半硬态、固溶加酸洗、光亮固溶处理状态成盘交货,也可以直条交货;环形件经固溶处理粗加工或除氧化皮后供应;机加工用棒材经退火后酸洗或磨光后供应,热加工用棒材可经退火并磨光后交货。
    1.7 GH605熔炼与铸造工艺 合金采用电弧炉或非真空感应炉熔炼后再经电渣重熔,或采用真空感应熔炼加电渣重熔。
    1.8 GH605应用概况与特殊要求 主要在引进机种上使用,用于制造导向叶片、涡轮外环、外壁、涡流器、封严片等高温零部件。该合金对硅含量很敏感,硅可促使合金在760~925℃之间暴露时形成Co2W型L相,从而使合金的室温塑性下降,因此合金中的硅含量应控制小于0.4%。

相关产品

Copyright www.alloy-east.com (复制链接) 丹阳市东方合金有限公司 GH5605,GH3128,GH3044 ,欢迎来电咨询.
企业圈子: